

Corso di Dottorato di Ricerca in Scienze della Vita e dell'Ambiente - Ciclo XXXVIII

Analysis of Climate Change Impact on the Aviation and Safety Strategies in the European Airports

PhD Student: Paolo Garbati Laboratorio Riduzione Rischio Disastri, DiSVA

This research aims to analyze data on extreme atmospheric events that have impacted air traffic in Europe, and considering the ongoing climate changes, propose strategies to mitigate

the risk of aviation disasters.

INTRODUCTION

Numerous studies have highlighted the global increase in climate change, and its particular impact on aviation; a sector highly susceptible to extreme weather events such as storms, turbulence, wind shear, microbursts, and low visibility (Chovgalenko, 2018).

These events, resulting from global warming and climate change, pose significant safety risks to aircraft. Although studies suggest an increase in Clear Air Turbulence (CAT) due to climate change, the overall picture of these phenomena is unclear (Williams, 2017).

This study aims to assess airport defense mechanisms and emergency plans against adverse weather conditions and anticipate future challenges posed by climate change. It also purposes to provide a critical analysis of strengths and weakness of the current modus operandi and possibly provide recommendations to enhance aviation safety, mixing the technological advances yet not forgetting the importance the human role in avoiding disasters.

METHODS

The initial phase of this study focused on identifying severe **incidents** involving aircraft triggered by intense meteorological phenomena such as wind shear and microbursts (Figg.1,2,3,4 and 5).

Subsequently, reports confirming the substantial increase of such extreme events due to climate change were collected and reviewed (Fig.2). During the second year of the doctoral program, a 50-hour

1st YEAR

• The first step of the research was to review the scientific literature that correlated the effects of climate change with accidents or incidents in the aeronautical sector.

- Statistics about climate change and extreme weather event have been collected and analyzed.
- Subsequently, attention was focused on the technological and regulatory organization of airports regarding the meteorological hazards.

2nd YEAR

• The second year is focused on the overall data collection. Numerous visits to airports, radar centers, and meteorological facilities are being conducted to gain a better understanding of protocols and dynamics of the civil aviation world.

• Close collaboration with Leonardo S.p.A. has been developed with the Leonardo Germany GmbH is Research to understanding modern technologies developed for flight safety *<i>K* **LEONARDO**

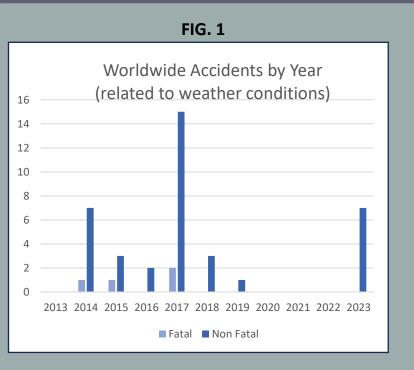
RESULTS

The data collected so far shows a steady increase in the frequency of wheatear events hazardous to aviation (Figg. 1 and 2). Statistics about flight safety show a significant correlation atmospheric phenomena and accidents (Figg 4 and 5). At the same time forecasts of traffic volume over the coming years anticipate a gradual but steady increase (Fig. 6).

The visits to airports, the Weather Center, and the meteorological radar factory of Leonardo Germany GmbH are showing that on the one hand new technologies are continuously developed yet on the other hand their installation and use in airport is inconsistent (the reasons are various ranging from cost to modus operandi of airport personnel).

The **questionnaires** to be administered to pilots are expected to provide both a snapshot of the current state and insights into pilots' expectations for flight safety in the context of climate change.

The Brussels Forum is expected to provide confirmation and additional insights on how to increase airports weather resilience.



internship over a 6 months was conducted with the multinational company Leonardo SpA to better understand the operation and limitations of avionic sensors and meteorological radar.

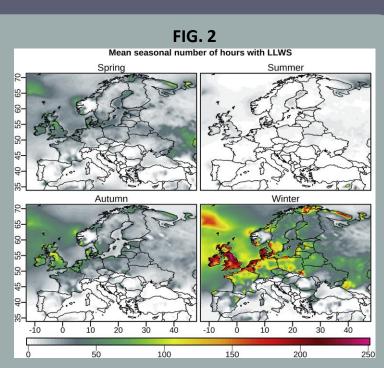

A visits to the Leonardo factory in **Germany** was carried out. Additionally, the airports of Milan Linate and Palermo Punta Raisi were visited, as well as the Aerospace Meteorology and Climatology Center of the **Italian Air Force**. Participation to the Flight Safety Forum to be held at **Eurocontrol** in **Brussels** is planned for the near future. Finally, to explore the human dimension of the issue, questionnaires will be administered to pilots to obtain feedback from those directly involved.

				FIG. 3													
ACCIDENT AND INCIDENT FOR WIND SHEAR, TURBOLENCE AND MICROBURST (1956-2020)																	
DATE	LOCATION	AIRCRAFT/Flight Number	Phase of I	Flight Occupant Fatalities/injur	red Airo	raft Dama	ge N	lote									
24th June 1956 Kano, Nigeria		BOAC 252/773	Take off	32 fatalities - 11 injured	Hul	Hull loss											
30th Jenuary 1974 Pago Pago, Samoa (USA)		Pam Am 806	Landing	96 fatalities - 4 injured	Hul	Hull loss											
07th August 1975 Denver, Colorado (USA)		Cont 426	Landing	15 injured	Hul	Hull loss			1								
24th June1975 JFK New York (USA)		Eastern 66	Landing	112 fatalities - 12 injured	Hul	Hull loss		burst									
23rd June 1976 Philadelphia, Pennsylvania (USA)		Allegery 121	Landing	86 injured	Hul	Hull loss											
03rd June 1977 Tucson, Arizona (USA)		CONT 63	Take off	N0/No		or											
14 March 1979	Doha, Qatar	Royal Jordan 600	Landing														
22nd August 1979 Atlanta, Georgia (USA)		Eastern 693 Boeing 727-125	Landing														
09th july 1982 New Orleans, Louisiana (USA)		Pan Am 759	Take off		R YEA	K IN H	HE II.	ALIAN	AIRPO	RIS							
13rd June 1984 Detroit, Michigan (USA)		US Air 183	Take off														
02nd August 1985	Dallas, Texas (USA)	Delta 191	Landing	Airport	Cod. IC/	0 2007	2008	2009	2010	2011 2	012	2013	2014 2	015	2016	2017	TOTALE
3rd September 1989	Santiago, Cuba	IL 62	T-L C	Bari Palese	LI								32	39	12	34	
21st December 1992 Faro, Porugal		MartinAir 495	Landing -		-					18	18			-	12		256
2nd July 1994 vicinity Charlotte NC USA_		McDonnell Douglas DC93	Landing	Pescara	L	BP 11	10	12	11	4	6	1	3	8	3	18	87
1st June 1999	Little Rock USA	McDonnell Douglas MD82	Landing	Lamezia Terme	LI	CA 17	19		11	11	12	3	12	15	20	4	124
3rd December 1999	vicinity Billund Denmark	Boeing 737-500 (B735)	1 II	Catania Fontanarossa	L		-	21	14	18	51	6		111	220	125	661
18th January 2001 Brisbane Australia		Boeing 737-400 (B734)	Go arounc-														
7th February 2001 Bilbao Spain		Airbus A320	Landing	Palermo Punta Raisi	L	ICJ 209	214	258	228	138	93	112	161	114	215	235	1977
21st January 2002 Hakodate Japan		Airbus A321	Landing	Reggio Calabria	L	CR 6	7	10	7	10	9	3	4	0	3	8	67
28th February 2002 en-route North Sea UK		AEROSPATIALE AS-332 Super Puma (Helicopter		Olbia Costa Smeralda	LI	EO 24	29	21	29	25	16		65	88	40	77	443
10th December 2005 vicinity Port Harcourt Nigeria		McDonnell Douglas DC93	Go around														
23rd September 2005 en-route Hawaii USA		AEROSPATIALE AS-350 (Helicopter)	Cruise	Milano Malpensa	LIN	/IC 41		22	20	25	22	26	89	84	48	41	449
1st September 2005 Squaw Lake Quebec Canada D		De Havilland Canada DHC-2 Beaver	Cruise	Bergamo Orio al Serio	LIN	VE 6	18	12	10	25	6	8	20	36	23	40	204
29th October 2006 vicinity Abuja Nigeria Boe		Boeing 737-200 (B732)	Take off	Torino Caselle	LIN	AF 4	6	3	3	0	11	1	4	31	16	8	87
15th April 2007	Sydney Australia	Boeing 747-400 (B744)	Landing		-		-					_					
20th December 2008	Denver USA	Boeing 737-500 (B735)		Genova	LII				16	20	21		29	41	38	31	242
September 2010		Airbus A319		Milano Linate	LIN	VIL 32	6	33	19	5	10	11	58	63	53	42	332
	Svolvaer Norway	DE HAVILLAND CANNE		Bologna Borgo Panigale	LI	PE 9	11	15	13	13	16	8	5	27	23	30	170
				Ancona Falconara	LI			8	11	5	8		2	1	1	3	62
					-						-		2	1	T		02
				Venezia Tessera		PZ 8		8	15	13	10	11	41				
				Roma Fiumicino	LI	RF 13	19	32	29	25	22						
				Napoli Capodichino	LIF	RN 21	54	28	11								
					LIF												
						(u 1)											

Sources: Creted by the autor with data taken from «The effect of global warming and climate changes on aircraft accidents between 2010-2022» by Akay T. 2023

Sources: Creted by the autor with data taken from https://www.icao.int/safety/iStars/Pages/Accident-Statistics.aspx. [Consulted. 22/04/2024]

Source: "Hazardous weather affecting European airports: Climatological estimates of situations with limited visibility, thunderstorm, low-level wind shear and snowfall from ERA5" by Taszarek M. (2020)

CONCLUSIONS

These **preliminary results** highlighted the importance of considering the impacts of climate change on aviation safety. Meteorological monitoring and forecasting technologies will undoubtedly play a crucial role in the aviation safety of tomorrow; however, human input is and will remain indispensable. The remaining part of this year and next year research activities will focus o the human dimension of flight safety focusing particularly on commercial airline pilots, who will be asked to identify the weather hazards they dread the most. This further layer of information will provide insights about prevention strategies currently used by European airports, fostering the discussion on how to enhance directives on air traffic management, and how enable airlines and regulatory authorities to assess the potential impact of climate change on specific flight routes, airports, and aircraft types.

Sources (Figg. 4 and 5): Creted by the autor with data taken from «The effect of global warming and climate changes on aircraft accidents between 2010-2022» by Akay T. 2023

Sources: https://www.eurocontrol.int/publication/eurocontrol-forecast-2024-2030 [consulted: 22/04/2024]

and Engineering (Vol. 1226, No. 1, p. 012020). IOP • Williams, P. D. (2017). Increased light, moderate, and severe clear-air turbulence in response to climate change. Advances in atmospheric sciences, 34(5), 576-586.

Informations and Contacts